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Abstract 

We introduce a general numerical simulation method that allows us to simulate different experimental conditions, 
getting the microcreep, elastic aftereffect and thermostimulated microdeformation curves. It also allows us to 
simulate the internal friction spectra vs. temperature in a similar way. The method is able to check the response 
of the material in these experimental tests as a function of the theoretical model in use and of the process 
activation parameters. 

1. Introduction 

The comparison between experimental results and 
theoretical predictions of the different models of dis- 
location mobility has been mainly qualitative to date, 
owing to the practical difficulty of producing quantitative 
predictions from these models. Because of the com- 
plexity an analytic solution to the problem is impossible; 
however, it is possible to do a study by numerical 
simulation on a computer. 

The simulation studies carried out up to now have 
been particular developments applied to a concrete 
model of dislocation mobility and these studies have 
focused only on calculations of the internal friction 
(IF) [1-5], wasting the capabilities of other experimental 
techniques such as microcreep (MC), elastic aftereffect 
or microcreep recovery (MCR) and thermostimulated 
microdeformation (MD), collectively known as quasi- 
static techniques [6]. 

For this reason we introduce here a general meth- 
odology of numerical simulation whose main objective 
is to simulate the dislocation mobility process in order 
to calculate the results that will be obtained experi- 
mentally by all the above-mentioned quasi-static and 
dynamic techniques assuming the validity of a specific 
theoretical model. The method introduces all the de- 
pendences of the concrete model in a parametric way 
and in an independent and replaceable program module. 

2. Numerical simulation 

The calculation method was previously described [7] 
from the point of view of the computational technique 
and that is not the objective of this paper. Here we 
will just give a short description of the different parts 
of the simulation process, remarking on the most rel- 
evant physical aspects. 

Firstly, we build up the energy diagram corresponding 
to a dislocation loop of length L submitted to internal 
stress ~ri and applied stress era in the crystalline lattice 
of the material. It is in this program module that we 
introduce the physical model of dislocation mobility 
that we would like to use for the simulation process. 
In this way, the calculation methodology allows us to 
simulate processes in which the dislocation mobility is 
controlled by the Peierls barriers, or by intrinsic or 
extrinsic point defects etc. 

In this paper we apply this method to simulate the 
dislocation mobility through the Peierls barriers of the 
crystal by the kink-pair-formation (KPF) process [8-10] 
within the constant-line-tension approach. 

In this model, the energy diagram of the dislocation 
can be built up starting from three contributions: 

E-r =Ep +E,,+ W~ (1) 

Ep being the energy associated with the Peierls barriers, 
E~ the energy corresponding to the line tension and 
W~ the work of the stresses acting on the dislocation. 
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This is the kind of energy diagram that can be found 
in the literature [1-5]; it is probably not the most 
accurate, from a theoretical point of view, for use in 
the KPF process, as we will comment later. In the 
present paper, we use this model to allow us to compare 
our numerical results with the results of previously 
obtained simulations [1-5]. 

Once the energy diagram with the internal stresses 
crl is built up, the statistical distribution is obtained 
from the total number of dislocations on the different 
valleys of the energy diagram, which constitute the 
initial dislocation distribution, and this sets the origin 
of the deformation. If a stress era is now applied, the 
new energy diagram can be calculated and the equation 

rli=l~l_l.ini_l-I-I'i+l.ini+l--(['i,i_l q-Fi.i+l)ni (2) 

can be solved for each of the energy valleys [2, 4], 
where ni represents the number of dislocations in the 
i valley and F~.i÷x and F~,i_l the jump frequencies of 
the dislocations from the i valley to the adjacent valleys 
on the energy diagram. The jump frequencies can be 
calculated from the height of the barriers in the energy 
diagram and from the temperature T [7]. In this way, 
we let the dislocation distribution evolve during a precise 
time At, after which the deformation caused by the 
mean dislocation advance can be calculated. From this 
basic process, we can obtain the deformation produced 
by an applied stress ira during a period of time At at 
a temperature T. 

The results obtained with the described simulation 
method will be presented for the special case of iron. 
The dislocation mobility in iron has been previously 
studied by MC, MD and IF (see ref. 11 for a review). 
The mobility of the non-screw dislocations due to the 
KPF process is responsible for the a relaxation at low 
temperatures (between 5 and 45 K). For this reason, 
the average values obtained experimentally for the a 
relaxation [11] were taken for our process. 

In the case of the MC measurement, the energy 
diagram is built up by first taking account of the internal 
stresses, and the non-disturbed dislocation population 
in each energy valley of the diagram is obtained. A 
constant stress tr~ is then applied, and after calculating 
the new energy diagram the deformation ea at time 
intervals At is obtained to build up the curve e= 6(t). 
For the MCR simulation, after reaching the complete 
relaxation in the MC curve, the applied stress is sup- 
pressed and the energy diagram is calculated again. 
We obtain the deformation E~ at time intervals At to 
build up the curve E= E(t). Both processes happen at 
T= constant. 

In Fig. 1 we show six MC curves obtained at different 
temperatures in a case in which we consider a dislocation 
length of 5000 Burgers vectors and an internal stress 
of 5 × 1 0  - 4  /z, /.t, being the shear modulus. The MCR 

curves corresponding to the previous MC curves after 
releasing the applied stress are shown in Fig. 2. In 
each case the MC curve was completely relaxed before 
releasing the stress in order to obtain the MCR curve 
at Eo(OO). 

In the case of the MD measurements, first the initial 
energy diagram is built up in a similar way to before. 
A constant stress ~ra is then applied, and the new energy 
diagram is calculated. After this, the temperature is 
increased at a constant heating rate and the deformation 
Ea is obtained at time intervals At to build up the curve 
e = E(T). In Fig. 3 we show five MD curves corresponding 
to the same case as before but at different heating 
rates. 

The process for obtaining the IF is more complex 
because the o--~ cycle, whose area is proportional to 
the IF, has to be built up. This process requires the 
cr-E cycle to be divided into stress increments ho-. In 
each step of the cycle, the corresponding energy diagram 
must be calculated as well as the net movement of the 
dislocations during a period of time At that depends 
on the oscillation frequency and the number of steps 
into which the ~r-e cycle is divided [7]. This process 
is repeated until some convergence criterion is reached 
and the ~r-e cycle is closed. At this moment the cycle 
area can be calculated numerically and as a consequence 
the IF value can be obtained. All this process is carried 
out at constant temperature, so we should repeat it at 
increments AT to obtain the ~b(T) spectrum point by 
point. 

The IF measurements in Fig. 4 were simulated for 
frequencies of 0.01, 0.1, 1, 10 and 100 Hz with an 
oscillation amplitude of 1 0  - 6  , a n  internal stress 
o'i=5 × 10-5/z and a dislocation length L =3200b. The 
IF spectra simulated at different frequencies show the 
temperature shift that we can expect from a thermally 
activated process, and will be discussed later. 

Once the general method of simulation is described, 
it is necessary to remark that the energy diagrams and 
the simulation results obtained for different values of 
the internal stresses o'i and dislocation lengths L are 
clearly different [7]. For this reason, in order to obtain 
simulation results comparable with the real experimental 
measurements, it is necessary to include line length 
and internal stress distributions. However, the simu- 
lation work carried out taking into account these dis- 
tributions will be presented in another paper because 
of space considerations. 

3. Discuss ion 

The best way of checking the consistency of the 
simulation results obtained is to consider them as 
experimental results. If we apply the usual methods 
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Fig. 1. M C  s imu la t ed  curves  for a d is locat ion line of  length  L =5000b ,  u n d e r  s t resses  tr~ = 5  X 10-4/.g and  ~r~= 10-4~,  at six t e m p e r a t u r e s :  
curve  a, 19 K; curve  b, 18.5 K; curve c, 18 K; curve d, 17.5 K; curve e, 17 K; curve  f, 16.5 K. 
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Fig. 2. M C R  s imu la t ed  curves  for a dis locat ion line of  length L = 5000b, u n d e r  s t resses  tr~ = 5  × 10-4,u. and  tra= 10-4/x, at six t e m p e r a t u r e s :  
curve  a, 19 K; curve b, 18.5 K; curve c, 18 K; curve d, 17.5 K; curve e, 17 K; curve f, 16.5 K. 

for the determination of the activation parameters to 
our results we can verify whether the simulation method 
used is reliable. In order  to do this, we plot the Arrhenius 
diagram corresponding to the maxima of the IF peaks 
of the simulated spectra at different frequencies for a 
simple case (with no distributions). The shifting in 
temperature  of the peaks v s .  frequency fits perfectly 

a straight line, giving an activation energy E = 0.0435 
eV and a pre-exponential time To = 2 ×  10 -1° s. 

In the case of the MC and MCR curves, the results 
obtained can be fitted to the theoretical expressions 
with very high correlation. The characteristic relaxation 
time at each temperature can be obtained and rep- 
resented in the Arrhenius diagram bearing in mind 
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Fig. 3. T h e r m o s t i m u l a t e d  ( M D )  s imula ted  c u ~ e s  ~ r  a d i s l ~ a t i o n  line o f  l eng th  L = 5000b, u n d e r  s t resses  ~ = 5 × 10 -4~  and  ~ = 10-4~,  
at five hea t ing  rates:  c u ~ e  a, 0.5 K min-~;  curve b, 1 K min -1 ;  c u ~ e  c, 2 K min -1 ;  curve d, 4 K min -1 ;  curve e, 8 K rain -~. 
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Fig. 4. IF  s imula ted spectra fo r  a d is locat ion l ine o f  length  L = 3200b, u n d e r  stresses Gi = 5 × 10-5/~ and @a = 10-6P ", at  f ive f requencies:  
curve a, 0.01 Hz; curve b, 0.1 Hz; curve  c, 1 Hz; curve d, 10 Hz; curve  e, 100 Hz.  

that to~',,= 1. In this way, from the MC results we get 
an activation energy E = 0.038 eV and a pre-exponential 
factor ~-o=7.6 × 10-lo s. In MCR, an activation energy 
E = 0.040 eV and a pre-exponential factor ~o = 3 × 10- lo 
s are obtained. These values of the pre-exponential 
factor ~'o of the relaxation time obtained by simulation 

are very close to that obtained experimentally 
(1.5 × 10-l°s) [11, 12] characteristic of  the KPF process. 

The activation energy obtained by MC simulation 
experiments is logically lower than that obtained by IF 
simulation experiments because of the contribution of 
the applied static stress work. The value of the activation 
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energy obtained by MCR is slightly lower than that 
obtained by IF because the dislocation movement takes 
place along a greater number of valleys during the 
MCR experiment. The mean energy barrier of the 
higher valleys is lower than that of the valleys close 
to the lowest minimum of the energy diagram, where 
the motion of the dislocations in an IF measurement 
takes place. In addition to this, the difference between 
the activation energies obtained and that introduced 
at the beginning of the program (E = 0.045 eV) is due 
to the curvature of the energy diagram around the 
lowest minimum position. 

The MD curves show a peculiar behaviour just when 
they start rising like that observed in real experience 
[11]. The activation volume of the process can be 
obtained from the half-height temperature shift AT 
between two curves [14, 15]. In this way we get a value 
of  20.5b 3 for the activation volume that is very close 
to the input value (2063). 

In this first approximation one cannot expect the 
simulation results to fit the experimehtal real results, 
owing to the complex structure of the a relaxation in 
iron that shows three components [11, 12] linked to 
the KPF process plus another component a' at very 
low temperatures (between 5 and 15 K) linked to the 
geometric kink migration on the screw dislocations [11, 
13]. A better approximation to the experimental results 
and a detailed analysis of the theoretical models requires 
the systematic introduction of the length and internal 
stress distributions already indicated. 

Besides, we would like to remark that the profile 
used for the energy diagram may not be the best to 
simulate the KPF process as Benoit has commented 
[16]. In fact, it is not clear that the kink pair need 
overcome any barrier during the annihilation process. 
Instead we should consider that the relaxation of the 
kinks in a backward direction is probably controlled 
by the delayed motion of the kinks along the dislocation 
line. This aspect is being developed now and will be 
taken into account in a further refinement of our 
simulation process. 

The simulation process developed leads to coherent 
results in good agreement with the experimentally ob- 
tained measurements as well as with the theoretical 
models of dislocation mobility, even using simple cases 
of calculation with no distributions at all. We can 
conclude that the method developed allows the sim- 
ulation of the dislocation mobility under different ex- 
perimental conditions in the anelastic range. The sim- 
ulation results should be comparable with the 
experimental results if length of dislocation and internal 
stress distributions of the material are used. 
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